
Stuck macros
deterministically interleaving

macro-expansion and type-checking

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

Stuck macros
deterministically interleaving

macro-expansion and type-checking

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

Stuck macros
deterministically interleaving

macro-expansion and type-checking

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

Type-aware

Stuck macros
deterministically interleaving

macro-expansion and type-checking

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

Type-aware

 non-

Stuck macros
deterministically interleaving

macro-expansion and type-checking

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

Type-aware

 non-

confluent

not confluent

✔

stuck fruits are confluent

type-aware macros are not confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

stuck macros are confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

? -> Maybe ?Maybe ? -> ?

Maybe ? -> Maybe ? Maybe … -> …

Maybe ? -> Maybe ?

✔

✔

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

Maybe ? -> Maybe ?

✔

✔

? -> Maybe ?Maybe ? -> ?

Maybe ? -> Maybe ? Maybe … -> …

outline

1. type-aware macros
2. partial types
3. stuck macros

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

Maybe ? -> Maybe ?

✔

✔

? -> Maybe ?Maybe ? -> ?

Maybe ? -> Maybe ? Maybe … -> …

outline

1. type-aware macros
2. partial types
3. stuck macros

 $p2 $p1

 $p2 $p1

type-aware macros

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = id

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = id

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = id

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = id

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = id

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = id

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = $pullMaybe

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = $pullMaybe

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = $pullMaybe

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = $pullMaybe

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = $pullMaybe

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = id

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = traverse $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = id

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = traverse $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

type-aware macros

pullMaybe0 :: Maybe a -> Maybe a
pullMaybe0 = id

pullMaybe1 :: [Maybe a] -> Maybe [a]
pullMaybe1 = traverse $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

Maybe a -> Maybe a

[Maybe a] -> Maybe [a]

 id :: a -> a
traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

Stuck macros
deterministically interleaving

macro-expansion and type-checking

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

type-aware macros are not confluent
p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

outline

1. type-aware macros
2. partial types
3. stuck macros

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

 $p2 $p1

 $p2 $p1

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

outline

1. type-aware macros
2. partial types
3. stuck macros

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

A message from
our sponsor: non-

Hackett, a language by Alexis King (@lexi_lambda)

A message from
our sponsor: non-

Hackett, a language by Alexis King (@lexi_lambda)

Hackett, a language by Alexis King (@lexi_lambda)

mapMaybe f [] = []
mapMaybe f (x:xs) = case f x of
 Nothing -> mapMaybe f xs
 Just y -> y : mapMaybe f xs

(defn map-maybe
 [[f Nil] Nil]
 [[f {x :: xs}] (case (f x)
 [Nothing (map-maybe f xs)]
 [(Just y) {y :: (map-maybe f xs)}])])

⇩

Hackett, a language by Alexis King (@lexi_lambda)

To learn more about

visit today!github.com/lexi-lambda/hackett

Hackett, a language by Alexis King (@lexi_lambda)

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

outline

1. type-aware macros
2. partial types
3. stuck macros

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

iterate ($p2 . idMay . $p1)

partial types
p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

iterate ($p2 . idMay . $p1)

partial types

?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

?

iterate ($p2 . idMay . $p1)

partial types

? -> ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

? -> ?

iterate ($p2 . idMay . $p1)

Maybe ? -> ? ? -> Maybe ?

partial types

Maybe ? -> ? ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

iterate ($p2 . idMay . $p1)

Maybe ? -> ? ? -> Maybe ?

partial types

Maybe ? -> ? ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

iterate ($p2 . idMay . $p1)

partial types

Arr ? (Maybe ?)

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

Arr (Maybe ?) ?

iterate ($p2 . idMay . $p1)

partial types

Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

iterate ($p2 . idMay . $p1)

partial types

Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

iterate ($p2 . idMay . $p1)

partial types

Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

getExpectedType :: Q PartialType

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

iterate ($p2 . idMay . $p1)

partial types

Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 Arr Unknown _ -> error "please add a type annotation"
 _ -> [| traverse $pullMaybe |]

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

getExpectedType :: Q PartialType

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

iterate ($p2 . idMay . $p1)

partial types

Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 Arr Unknown _ -> error "please add a type annotation"
 _ -> [| traverse $pullMaybe |]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

getExpectedType :: Q PartialType

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

$p1

$p2

type-aware macros are not confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

Stuck macros
deterministically interleaving

macro-expansion and type-checking

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

type-aware macros are not confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

Maybe … -> …Maybe ? -> Maybe ?

?

type-aware macros are not confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

Maybe … -> …Maybe ? -> Maybe ?

type-aware macros are not confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

Maybe … -> …Maybe ? -> Maybe ?

type-aware macros are not confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

Maybe … -> …Maybe ? -> Maybe ?

type-aware macros are not confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

Maybe … -> …Maybe ? -> Maybe ?

type-aware macros are not confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

Maybe … -> …Maybe ? -> Maybe ?

type-aware macros are not confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

Maybe … -> …Maybe ? -> Maybe ?

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

outline

1. type-aware macros
2. partial types
3. stuck macros

Maybe ? -> ? ? -> Maybe ?

Maybe … -> …Maybe ? -> Maybe ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

Maybe ? -> Maybe ?

outline

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

? -> Maybe ?✔Maybe ? -> ?

Maybe ? -> Maybe ? Maybe … -> …

1. type-aware macros
2. partial types
3. stuck macros

? -> Maybe ?Maybe ? -> ?

Maybe ? -> Maybe ?

✔

✔

A message from
our sponsor: non-

Typer, a language by Stefan Monnier (Université de Montréal)

A message from
our sponsor: non-

Typer, a language by Stefan Monnier (Université de Montréal)

Typer, a language by Stefan Monnier (Université de Montréal)

if 2 + 2 == 4
 then "sane"
 else "crazy"

(if_then_else_ (_==_ (_+_ 2 2) 4)
 "sane"
 "crazy")

⇩

Typer, a language by Stefan Monnier (Université de Montréal)

define-macro (infix-replicate n op arg) = ...

triple x = infix-replicate 3 _*_ x

triple x = x * x * x
⇩

Typer, a language by Stefan Monnier (Université de Montréal)

macro : (List Sexp -> Sexp) -> Macro;

Typer, a language by Stefan Monnier (Université de Montréal)

macro : (List Sexp -> Sexp) -> Macro;
infix-replicate : Int -> Macro;

triple x = infix-replicate 3 _*_ x

triple x = x * x * x
⇩

To learn more about

visit today!gitlab.com/monnier/typer

Typer, a language by Stefan Monnier (Université de Montréal)

https://gitlab.com/monnier/typer/

Maybe ? -> Maybe ?

outline

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

? -> Maybe ?✔Maybe ? -> ?

Maybe ? -> Maybe ? Maybe … -> …

1. type-aware macros
2. partial types
3. stuck macros

? -> Maybe ?Maybe ? -> ?

Maybe ? -> Maybe ?

✔

✔

iterate ($p2 . idMay . $p1)

Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

data Type = Arr Type Type
 | Maybe Type
 | ...

getExpectedType :: Q PartialType

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

$p1

stuck macros

iterate ($p2 . idMay . $p1)

Arr (Maybe) Arr (Maybe)

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

getExpectedType :: Q PartialType

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

stuck macros

iterate ($p2 . idMay . $p1)

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

getExpectedType :: Q PartialType

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

$p2

stuck macros

Arr (Maybe) Arr (Maybe)

iterate ($p2 . idMay . $p1)

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

getExpectedType :: Q PartialType

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

$p1

$p1

stuck macros

Arr (Maybe) Arr (Maybe)

iterate ($p2 . idMay . $p1)

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

getExpectedType :: Q Type

data Type = Arr Type Type
 | Maybe Type
 | ...

getExpectedType :: Q PartialType

data PartialType = Arr PartialType PartialType
 | Maybe PartialType
 | ...
 | Unknown

$p1

$p1

$p1 ? -> Maybe ?

stuck macros

Arr (Maybe) Arr (Maybe)

stuck macros are confluent

iterate ($p2 . idMay . $p1)

iterate ($p2 . idMay . traverse $p3)iterate (id . idMay . $p1)

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

$p2

$p2$p1

$p1

Maybe ? -> ? ? -> Maybe ?

? -> Maybe ?Maybe ? -> ?

Maybe ? -> Maybe ? Maybe … -> …

Maybe ? -> Maybe ?

✔

✔

Haskell jobs: .com

these slides: gelisam.com/files/stuck-macros.pdf

(work from anywhere in or)

Questions?
recommended questions (I have bonus slides) :
● can two macros get stuck on each other?
● why is this confluent in general?

 🇨🇦

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

http://gelisam.com/files/stuck-macros.pdf

selfish macros

iterate ($p2 . $p1)

$p2

? -> ?

? -> ?

? -> ?

$p1 ? -> ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

selfish macros

iterate ($p2 . $p1)

$p2

? -> ?

? -> ?

? -> ?

$p1 ? -> ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

type ambiguity error:
please add a type annotation

selfish macros

iterate ($p2 . $p1)

$p2? -> ? $p1 ? -> ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

$pullMaybe :: Maybe a -> Maybe a
$pullMaybe :: [Maybe a] -> Maybe [a]
$pullMaybe :: [[Maybe a]] -> Maybe [[a]]

? -> ?? -> ?

selfish macros

iterate ($p2 . $p1)

$p2

? -> Maybe?

? -> ?

? -> Maybe ?

$p1 ? -> ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

$pullMaybe :: Maybe a -> Maybe a
$pullMaybe :: [Maybe a] -> Maybe [a]
$pullMaybe :: [[Maybe a]] -> Maybe [[a]]

selfish macros

iterate ($p2 . $p1)

$p2

Maybe ? -> Maybe?

? -> ?

Maybe ? -> Maybe ?

$p1 ? -> ?

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

$pullMaybe :: Maybe a -> Maybe a
$pullMaybe :: [Maybe a] -> Maybe [a]
$pullMaybe :: [[Maybe a]] -> Maybe [[a]]

Maybe ? -> Maybe ? ✔

selfish macros

iterate ($p2 . $p1)

$p2

Maybe ? -> Maybe?

Maybe ? -> Maybe ?

Maybe ? -> Maybe ?

$p1

p1 = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
 idMay :: Maybe a -> Maybe a

$pullMaybe :: Maybe a -> Maybe a
$pullMaybe :: [Maybe a] -> Maybe [a]
$pullMaybe :: [[Maybe a]] -> Maybe [[a]]

✔

selfish macros

pullMaybe :: Q Exp
pullMaybe = do
 getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

preliminary output

pullMaybe :: Q Exp
pullMaybe = do
 setPartialType [| Maybe _ -> Maybe _ |]
 getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

preliminary output

pullMaybe :: Q Exp
pullMaybe = do
 -- setPartialType [| Maybe _ -> Maybe _ |]
 getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

preliminary output

pullMaybe :: Q Exp
pullMaybe = do
 -- setPartialType [| Maybe _ -> Maybe _ |]
 getExpectedType >>= \case
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

preliminary output

pullMaybe :: Q Exp
pullMaybe = do
 [setPartialType| Maybe s -> Maybe t |]
 case s of
 Arr (Maybe _) _ -> [| id |]
 _ -> [| traverse $pullMaybe |]

Haskell jobs: .com

these slides: gelisam.com/files/stuck-macros.pdf

(work from anywhere in or)

Questions?
recommended questions (I have bonus slides) :
● can two macros get stuck on each other?
● why is this confluent in general?

 🇨🇦

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

http://gelisam.com/files/stuck-macros.pdf

proof sketch

N independent processes

A

B

C

proof sketch

N independent processes:
same results regardless of interleaving

A

B

C

proof sketch

N independent processes with ordering constraints:
same results regardless of interleaving

A

B

C

proof sketch

N independent processes with ordering constraints:
same results regardless of interleaving

X

B

X

proof sketch

N independent processes with ordering constraints:
same results regardless of interleaving

A

B

C

proof sketch

N independent macro expansions with ordering constraints:
same results regardless of interleaving

$p1 A

$p2 B

$p3 C

proof sketch

N independent macro expansions which sometimes get stuck:
same results regardless of interleaving

$p1 [| id |] A

$p2 B

$p3 Maybe _ C

Haskell jobs: .com

these slides: gelisam.com/files/stuck-macros.pdf

(work from anywhere in or)

Questions?
recommended questions (I have bonus slides) :
● can two macros get stuck on each other?
● why is this confluent in general?

 🇨🇦

presented at C◦mp◦se NYC 2019 by Samuel Gélineau

http://gelisam.com/files/stuck-macros.pdf

