Stuck macros

deterministically interleaving
macro-expansion and type-checking

presented at Compese NYC 2019 by Samuel Gélineau

Stuck

Type-aware
Stueke

Type-aware
>taelk- macros

non-peterministically nierieaving

macro-expansion and type-checking

presented at Compese NYC 2019 by Samuel Gélineau

Stuck
‘_p.efﬁbeterministically

nnnnnnnnnnnn

stuck fruits are confluent

/

g e S

il t;t;"‘ ‘
0:‘3}90)
OOONE
il pff

Maybe ? -> ? ? -> Maybe ?

iterate ($gz . idMay . $A1)

/ N

$p2 $p1
e ~
Maybe ? -> Maybe ? Maybe ... -> ... \
»
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
| |
$p1 $p2

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

stuck macros are confluent

Maybe ? -> ? ? -> Maybe ?

iterate ($A2 . idMay . $$1)

/ DS e,
~ 1

ViMaybe ? -> ? $p2 $p1]— 2 -> Maybe ? |
,//, S ———
Maybe ? -> Maybe ? Maybe ... -> ... [«
~
» J A
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
|
viMaybe ? -> Maybe ? $p1 $p2

v

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

1. type-aware macros
2. partial types
3. stuck macros

outline

$p1

$p2 $p1

1. type-aware macros
2. partial types
3. stuck macros

$p2

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) -> []| id |]
-> [| traverse $pullMaybe |]

id :: a -> a

type-aware macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe© :: Maybe a -> Maybe a

pullMaybeo = id

pullMaybel :: [Maybe a] -> Maybe [a]

pullMaybel = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a

type-aware macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe©@ :: Maybe a -> Maybe a

pullMaybe® = id

pullMaybel :: [Maybe a] -> Maybe [a]

pullMaybel = traverse id

pullMaybe2 :: [[Maybe a]|] -> Maybe [[a]l]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a

type-aware macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe@ :: Maybe a -> Maybe a

pullMaybe® = id

pullMaybel :: [Maybe a] -> Maybe [a]

pullMaybel = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a

type-aware macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe© :: Maybe a -> Maybe a

pullMaybe® = id

pullMaybel :: [Maybe a] -> Maybe [a]

pullMaybel = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe |[[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a

type-aware Macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe© :: Maybe a -> Maybe a

pullMaybe® = id

pullMaybel :: [Maybe a] -> Maybe [a]

pullMaybel = traverse id
pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]

pullMaybe2 = traverse (traverse id) 'n !
DullMaybe :: [\ mber one th‘ g
= “t

‘fpu‘ 'm K} ecLeulype >>— \case
Jrr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a

type-aware macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe© :: Maybe a -> Maybe a

pullMaybeo = id

pullMaybel :: [Maybe a] -> Maybe [a]

pullMaybel = traverse id

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = traverse (traverse id)

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a
type-aware Macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

pullMaybe©@ :: Maybe a -> Maybe a
pullMaybed = $pullMaybe

pullMaybel :: [Maybe a] -> Maybe [a]
pullMaybel = $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a
type-aware Macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

pullMaybe©@ :: Maybe a -> Maybe a
pullMaybe® = $pullMaybe

pullMaybel :: [Maybe a] -> Maybe [a]
pullMaybel = $pullMaybe

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]]
pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a
type-aware Macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

pullMaybe©@ :: Maybe a -> Maybe a
pullMaybe® = $pullMaybe

pullMaybel :: [Maybe a] -> Maybe [a]

pullMaybel _ $pullMaybe getExpectedType :: Q Type

data Type = Arr Type Type

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]] IMmmeTWm

pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a
type-aware Macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]

pullMaybe@ :: Maybe a -> Maybe a
pullMaybe® = $pullMaybe

pullMaybel :: [Maybe a] -> Maybe [a]

pullMaybel _ $pullMaybe getExpectedType :: Q Type

data Type = Arr Type Type

pullMaybe2 :: [[Maybe a]] -> Maybe [[a]] IM%meTWm

pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) -> [| id |]
-> [| traverse $pullMaybe |]

id :: a -> a

type-aware macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe@ :: Maybe a -> Maybe a

pullMaybe® = $pullMaybe

pullMaybel :: LMaybe al\ -> Maybe [a] getExpectedType :: Q Type
pullMaybel = $pullMaybe Gats Tyoe - Arr Type Type
pullMaybe2 :: [[Maybe a]] -> Maybe [[a]] IM?meTﬂm
pullMaybe2 = $pullMaybe

pullMaybe :: Q Exp

pullMaybe = getExpectedType >>= \case

Arr (Maybe) _ -> [| id |]

-> [| traverse $pullMaybe |]

id :: a -> a

type-aware macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe© :: Maybe a -> Maybe a

pullMaybeo = id

pullMaybel :: [Maybe a] -> Maybe [a] setExpectedType :: O Type
pullMaybel = traverse $pullMaybe Gats Tyoe - Arr Type Type
pullMaybe2 :: [[Maybe a]] -> Maybe [[a]] Iﬁ?METwm
pullMaybe2 = traverse $pullMaybe

pullMaybe :: Q Exp

pullMaybe = getExpectedType >>= \case

Arr (Maybe) -> []| id |]

-> [| traverse $pullMaybe |]

id :: a -> a

type-aware Macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe@ :: Maybe a -> Maybe a

pullMaybed = id

pullMaybel :: [Maybe a] -> Maybe [a] setExpectedType :: O Type
pullMaybel = traverse $pullMaybe Gats Type - Arr Type Type
pullMaybe2 :: [[Maybe a]] -> Maybe [[a]] IM?meTﬂm
pullMaybe2 = traverse $pullMaybe

pullMaybe :: Q Exp

pullMaybe = getExpectedType >>= \case

Arr (Maybe) _ -> [| id |]

-> [| traverse $pullMaybe |]

id :: a -> a

type-aware macros traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
pullMaybe© :: Maybe a -> Maybe a
pullMaybe® = id

Maybe a -> Maybe a
pullMaybel :: [Maybe—aj =¥ TdyUE [a]
pullMaybel = traverse $nullMavhe

data Type = Arr Type Type

[Maybe a] -> Maybe [a]
pullMaybe2 :: [[Maypea7] i mayoe—T[a]] I&?MeTwm

pullMaybe2 = traverse $pullMaybe

getExpectedType :: Q Type

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

interleaving
macro-expansion and type-checking

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
type-aware macros are not confluent idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($g2 . idMay . $$1)

e N

$p2 $p1
yd N
Maybe ? -> Maybe ? Maybe ... -> ... \
»
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
| |
$pl $p2

\ \

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

outline

$p1

$p2 $p1

1. type-aware macros
2. partial types
3. stuck macros

$p2

Maybe ? -> ?

Maybe ? -> Maybe ?

? -> Maybe ?

2. partial types

Maybe ...

-> ...

Hackett, a language by Alexis King (@lexi_lambda)

A message from
UT [non-SPONSOI:

Ha ckeftt

Hackett, a language by Alexis King (@lexi_lambda)

A message from
OUr [ron SPONSOL

Hackett, a language by Alexis King (@lexi_lambda)

[]

case f x of
Nothing -»> mapMaybe f xs
Just y -> vy : mapMaybe f xs

mapMaybe f []
mapMaybe f (x:xs)

O
(defn map-maybe
[[f Nil] Nil]
[[f {x :: xs}] (case (f x)
[Nothing (map-maybe f xs)]

[(Just y) {y :: (map-maybe ¥ xs)}]1)])

Hackett, a language by Alexis King (@lexi_|lambda)

[NN | toy.rkt - DrRacket

Check Syntax Ve Debug @[> Macro Stepper 9] Run[> Stop

#lang hackett \\\-

(defn map-maybe
[[f Nil] Nill]

[[12 xs}] (case (f x)
' (map-maybe f xs)]
[(Just y) {y :: (map—-m '*kxs)}])])

{a -> (Maybe b)}

ke

Hackett, a language by Alexis King (@lexi_|lambda)

To learn more about

rHackeftt

\I|S|t github. com/lexi-lambda/hacketttﬂday!

Maybe ? -> ?

Maybe ? -> Maybe ?

? -> Maybe ?

2. partial types

Maybe ...

-> ...

pl = p2 = p3 = pullMaybe
_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a

iterate ($p2 . idMay . $p1)

partial types

pl = p2
iterate

idMay ::

= p3 = pullMaybe
:: (a ->a) -> (a -> a)
Maybe a -> Maybe a

?

iterate ($$z . idMay . $A1)

?

pl = p2 = p3 = pullMaybe
_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a

P o-> 7 P o-> 7

iterate ($g2 . idMay . $$1)

pl = p2 = p3 = pullMaybe

_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($42 . idMay . $é1)

pl = p2 = p3 = pullMaybe

_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($Jz . idMay . $A1)

pl = p2 = p3 = pullMaybe
_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a

Arr (Maybe ?) ? || Arr ? (Maybe ?)

iterate ($42 . idMay . $A1)

getExpectedType :: Q Type

data Type = Arr Type Type

| Maybe Type
| .

pl = p2 = p3 = pullMaybe

_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a
Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

iterate ($32 . idMay . $A1)

getExpectedType :: Q Type

data PartialType = Arr PartialType PartialType data Type = Arr Type Type

| Maybe PartialType | aybe Type
| . | .
|

Unknown

pl = p2 = p3 = pullMaybe
_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a

Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

iterate ($$z . idMay . $£1)

getExpectedType :: Q Type

data PartialType = Arr PartialType PartialType data Type = Arr Type Type
| Maybe PartialType | Maybe Type
| . | .
| Unknown

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

pl = p2 = p3 = pullMaybe
_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a

Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

iterate ($42 . idMay . $A1)

getExpectedType :: Q PartialType Lol bxpect od et
data PartialType = Arr PartialType PartialType data Type = Arr Type Type
Maybe PartialType	Maybe Type
Unknown	

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

pl = p2 = p3 = pullMaybe
_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a

Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)

iterate ($42 . idMay . $A1)

getExpectedType :: Q PartialType getExpectedlype—-——o—Fype
data PartialType = Arr PartialType PartialType data Type = Arr Type Type
Maybe PartialType	M ybe Type
Unknown	

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case

Arr (Maybe) _ -> [| id |]

Arr Unknown -> error "please add a type annotation”
-> [| traverse $pullMaybe |]

pl = p2 = p3 = pullMaybe

_ iterate :: (a -> a) -> (a -> a)
partlal types idMay :: Maybe a -> Maybe a
Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)
iterate ($32 . idMay . $A1)

getExpectedType :: Q PartialType getExpectedlyoe—-—o—Type
data PartialType = Arr PartialType PartialType data Type = Arr Type Type

| Maybe PartialType | Maybe Type

| . | .

| Unknown

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |] [sp2

LAep Unkoowy s —prease—oUt o Lype Moot ion
-> [| traverse $pullMaybe |] [$p2

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
type-aware macros are not confluent idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($g2 . idMay . $A1)

e N

$p2 $p1
pd N
Maybe ? -> Maybe ? Maybe ... -> ... \\\\\~k
»
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
| |
$p1 $p2

v v

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

interleaving
macro-expansion and type-checking

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
type-aware macros are not confluent idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($42 . idMay . $A1)

/ N

$p2 $p1
e N
Maybe ? -> Maybe ? Maybe ... -> ... \
»
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
| |
$p1 $p2

\ \

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
type-aware macros are not confluent idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($42 . idMay . $A1)

/ N

$p2 $p1
e N
Maybe ? -> Maybe ? Maybe ... -> ... \
»
iterate (id . idMay . %pl) iterate ($p2 . idMay . traverse $p3)
| |
$pl $p2

\ \

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
type-aware macros are not confluent idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($42 . idMay . $A1)

/ N

$p2 $p1
e N
Maybe ? -> Maybe ? Maybe ... -> ... \
»
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
| |
$p1 $p2

\ \

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
type-aware macros are not confluent idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($42 . idMay . $A1)

/ N

$p2 $p1
e N
Maybe ? -> Maybe ? Maybe ... -> ... \
»
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
| |
$p1 $p2

\ \

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
type-aware macros are not confluent idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($42 . idMay . $A1)

/ N

$p2 $p1
e N
Maybe ? -> Maybe ? Maybe ... -> ... \
»
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
| |
$p1 $p2

\ \

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
type-aware macros are not confluent idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($42 . idMay . $A1)

/ N

$p2 $p1
e N
Maybe ? -> Maybe ? Maybe ... -> ... \
»
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
| |
$p1 $p2

\ v

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
type-aware macros are not confluent idMay :: Maybe a -> Maybe a
Maybe ? -> ? ? -> Maybe ?

iterate ($42 . idMay . $A1)

/ N

$p2 $p1
e N
Maybe ? -> Maybe ? Maybe ... -> ... \
»
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
| |
$p1 $p2

v

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

VWV

Maybe ? -> ?

Maybe ? -> Maybe ?

? -> Maybe ?

2. partial types

Maybe ...

-> ...

outline

vMaybe > -> 2 >—%p2 Gplo-- <7 -> Maybe ? |
1. type-aware macros

2. partial types

3. stuck macros

viMaybe ? -> Maybe ?

Typer, a language by Stefan Monnier (Université de Montreal)

A message from
UT [non-SPONSOI:

T yper

Typer, a language by Stefan Monnier (Université de Montreal)

A message from
OUr [ron SPONSOL

TXOR s%c(macros!

comin

Typer, a language by Stefan Monnier (Université de Montreal)

if 2 + 2 ==
then "sane"
else "crazy”

4

(if then else (== (+ 2 2) 4)
"sane"
Ilcr‘azyll)

Typer, a language by Stefan Monnier (Université de Montreal)

define-macro (infix-replicate n op arg) = ...

triple x = infix-replicate 3 * x

3
triple x = X * x * X

Typer, a language by Stefan Monnier (Université de Montreal)

macro : (List Sexp -> Sexp) -> Macro;

Typer, a language by Stefan Monnier (Université de Montreal)

macro : (List Sexp -> Sexp) -> Macro;
infix-replicate : Int -> Macro;

triple x = infix-replicate 3 * x

3
triple x = X * x * X

Typer, a language by Stefan Monnier (Université de Montreal)

To learn more about

ITyper

V|S|t gitlab.com/monnier/typer t[)day'

https://gitlab.com/monnier/typer/

outline

vMaybe > -> 2 >—%p2 Gplo-- <7 -> Maybe ? |
1. type-aware macros

2. partial types

3. stuck macros

viMaybe ? -> Maybe ?

pl = p2 = p3 = pullMaybe

iterate :: (a -> a) -> (a -> a)
stuck macros idMay :: Maybe a -> Maybe a
Arr (Maybe Unknown) Unknown Arr Unknown (Maybe Unknown)
iterate ($Jz . idMay . $A1)
getExpectedType :: Q PartialType
data PartialType = Arr PartialType PartialType data Type = Arr Type Type
| Maybe PartialType | Maybe Type
| . | .
| Unknown

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) -> [| id |]
-> [| traverse $pullMaybe |] [$p2

pl = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
stuck macros idMay :: Maybe a -> Maybe a

Arr (Maybe 1) 1 Arr L (Maybe L)

iterate ($Jz . idMay . $A1)

Letbxpeciod g L= getExpectedType :: Q Type
data PartialType = Arr PartialType PartialType data Type = Arr Type Type
| Maybe PartialType | Maybe Type
| . |
| Unknown

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

pl = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
stuck macros idMay :: Maybe a -> Maybe a

Arr (Maybe 1) 1 Arr 1 (Maybe 1)

iterate ($g2 . idMay . $A1)

getExpectedlypng ——i—Q—PaptEiatfype getExpectedType :: Q Type
data PartialType = Arr PartialType PartialType data Type = Arr Type Type
| Maybe PartialType | Maybe Type
| . | ...
| Unknown

pullMaybe :: Q Exp

pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |] [$p2

-> [| traverse $pullMaybe |]

pl = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
stuck macros idMay :: Maybe a -> Maybe a

Arr (Maybe 1) 1 Arr 1 (Maybe 1)

iterate ($42 . idMay . $A1)

getExpectedlypng ——i—Q—PaptEiatfype getExpectedType :: Q Type
data PartialType = Arr PartialType PartialType data Type = Arr Type Type
| Maybe PartialType | Maybe Type
| . | ...
| Unknown

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |] [sext
_________ -> [| traverse $pullMaybe |] [Sext

pl = p2 = p3 = pullMaybe
iterate :: (a -> a) -> (a -> a)
stuck macros idMay :: Maybe a -> Maybe a

Arr (Maybe 1) 1 Arr 1 (Maybe 1)

iterate ($42 . idMay . $A1) $p1-"~<} -> Maybe ? |
getExpectedlypne —w—Q-—RaptiatFype getExpectedType :: Q Type
data PartialType = Arr PartialType PartialType data Type = Arr Type Type
| Maybe PartialType | Maybe Type
|- |
| Unknown

pullMaybe :: Q Exp
pullMaybe = getExpectedType >>= \case
Arr (Maybe) _ -> [| id |] [sert
_________ -> [| traverse $pullMaybe |] [sex

stuck macros are confluent

Maybe ? -> ? ? -> Maybe ?

iterate ($A2 . idMay . $$1)

/ DS e,
~ 1

ViMaybe ? -> ? $p2 $p1]— 2 -> Maybe ? |
,//, S ———
Maybe ? -> Maybe ? Maybe ... -> ... [«
~
» J A
iterate (id . idMay . $pl) iterate ($p2 . idMay . traverse $p3)
|
viMaybe ? -> Maybe ? $p1 $p2

v

iterate (id . idMay . id) iterate (id . idMay . traverse $p3)

these slides: gelisam.com/files/stuck-macros.pdf

Haskell jobs: ’ SimSpace.com pemofel (work from anywhere in Eor f+)

Questions?

recommended questions (I have bonus slides) :
e can two macros get stuck on each other?
e why is this confluent in general?

presented at Co-mpese NYC 2019 by Samuel Gélineau

http://gelisam.com/files/stuck-macros.pdf

pl = p2 = p3 = pullMaybe

) iterate :: (a -> a) -> (a -> a)
selfish macros idMay :: Maybe a -> Maybe a

?o-> 7 P o-> 7

iterate ($A2 . $A1)

___________ / \ S |

: \\\ s \! /,/ |

L2 -> ? v----|$p2 $pli----<2 -> ?

i) 7 < “ |

| I — / \ __________ d
y 4 R N

pl = p2 = p3 = pullMaybe

) iterate :: (a -> a) -> (a -> a)
selfish macros idMay :: Maybe a -> Maybe a
? -> ? ? -> ?
iterate ($A2 . $A1)
——————————— 7 N BaEsEE S S
: ‘\\ 7 \. y |
2 -> 2 | $p2 $pl |2 > 2
! / d N AN !
L / \ __________ 4
X R N

type ambiguity error:
please add a type annotation

pl = p2 = p3 = pullMaybe

) iterate :: (a -> a) -> (a -> a)
selfish macros idMay :: Maybe a -> Maybe a
2 -> ? ?->?
iterate ($gz . $31)
$p2 $pl
$pullMaybe :: Maybe a -> Maybe a
$pullMaybe :: [Maybe a] -> Maybe [a]

$pullMaybe :: [[Maybe a]] -> Maybe [[a]]

pl = p2 = p3 = pullMaybe

) iterate :: (a -> a) -> (a -> a)
selfish macros idMay :: Maybe a -> Maybe a

? -> Maybe ? ? -> Maybe?

iterate ($gz . $31)

$p2 $pl
$pullMaybe :: Maybe a -> Maybe a
$pullMaybe :: [Maybe a] -> Maybe [a]

$pullMaybe :: [[Maybe a]] -> Maybe [[a]]

pl = p2 = p3 = pullMaybe
) iterate :: (a -> a) -> (a -> a)
selfish macros idMay :: Maybe a -> Maybe a

Maybe ? -> Maybe ? Maybe ? -> Maybe?

iterate ($gz . $31)

$p2 $pl
$pullMaybe :: Maybe a -> Maybe a
$pullMaybe :: [Maybe a] -> Maybe [a]

$pullMaybe :: [[Maybe a]] -> Maybe [[a]]

pl = p2 = p3 = pullMaybe
) iterate :: (a -> a) -> (a -> a)
selfish macros idMay :: Maybe a -> Maybe a

Maybe ? -> Maybe ? Maybe ? -> Maybe?

iterate ($g2 . $31)

VvMaybe ? -> Maybe:5:>>"--$P2 $p1 “"'<ijigybe ? -> Maybe ? V/

$pullMaybe :: Maybe a -> Maybe a
$pullMaybe :: [Maybe a] -> Maybe [a]
$pullMaybe :: [[Maybe a]] -> Maybe [[a]]

selfish macros

pullMaybe :: Q Exp
pullMaybe = do
getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

preliminary output

pullMaybe :: Q Exp
pullMaybe = do
setPartialType [| Maybe _ -> Maybe |]
getExpectedType >>= \case
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

preliminary output

pullMaybe :: Q Exp
pullMaybe = do
-- setPartialType [| Maybe _ -> Maybe |]
getExpectedType >>= \case
Arr (Maybe) _ -> []| id |]
-> [| traverse $pullMaybe |]

preliminary output

pullMaybe :: Q Exp
pullMaybe = do
-- setPartialType [| Maybe _ -> Maybe |]
getExnecteatpe >>= \case
Arr (Maybe) _ -> []| id |]
-> [| traverse $pullMaybe |]

preliminary output

pullMaybe :: Q Exp
pullMaybe = do
[setPartialType| Maybe s -> Maybe t |]
case s of
Arr (Maybe) _ -> [| id |]
-> [| traverse $pullMaybe |]

these slides: gelisam.com/files/stuck-macros.pdf

Haskell jobs: ’ SimSpace.com pemofel (work from anywhere in Eor f+)

Questions?

recommended questions (I have bonus slides) :
e can two macros get stuck on each other?
e why is this confluent in general?

presented at Co-mpese NYC 2019 by Samuel Gélineau

http://gelisam.com/files/stuck-macros.pdf

proof sketch

N independent processes

proof sketch

N independent processes:
same results regardless of interleaving

proof sketch

N independent processes with ordering constraints:
same results regardless of interleaving

AN
N

proof sketch

N independent processes with ordering constraints:
same results regardless of interleaving

N
N\

P> I EE—

proof sketch

N independent processes with ordering constraints:
same results regardless of interleaving

AN
N

proof sketch

N independent macro expansions with ordering constraints:
same results regardless of interleaving

AN
$p \

proof sketch

N independent macro expansions which sometimes get stuck:
same results regardless of interleaving

$p1l > [id |] > A

g AN
$p \

$p3 »| Maybe f———p]

these slides: gelisam.com/files/stuck-macros.pdf

Haskell jobs: ’ SimSpace.com pemofel (work from anywhere in Eor f+)

Questions?

recommended questions (I have bonus slides) :
e can two macros get stuck on each other?
e why is this confluent in general?

presented at Co-mpese NYC 2019 by Samuel Gélineau

http://gelisam.com/files/stuck-macros.pdf

